3.767 \(\int \frac{1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=382 \[ -\frac{8 a b \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \left (a^2-b^2\right )^2 \sqrt{a+b \cos (c+d x)}}+\frac{2 a \sin (c+d x)}{3 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac{2 (a-3 b) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{3 a d (a-b) (a+b)^{3/2} \sqrt{\sec (c+d x)}}+\frac{8 b \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{3 a d (a-b) (a+b)^{3/2} \sqrt{\sec (c+d x)}} \]

[Out]

(8*b*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]]
)], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a*(a - b
)*(a + b)^(3/2)*d*Sqrt[Sec[c + d*x]]) + (2*(a - 3*b)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a +
 b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*S
qrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a*(a - b)*(a + b)^(3/2)*d*Sqrt[Sec[c + d*x]]) + (2*a*Sin[c + d*x])/(3*
(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]) - (8*a*b*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*(a^2
 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.728897, antiderivative size = 382, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4222, 2799, 2993, 2998, 2816, 2994} \[ -\frac{8 a b \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \left (a^2-b^2\right )^2 \sqrt{a+b \cos (c+d x)}}+\frac{2 a \sin (c+d x)}{3 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac{2 (a-3 b) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{3 a d (a-b) (a+b)^{3/2} \sqrt{\sec (c+d x)}}+\frac{8 b \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{3 a d (a-b) (a+b)^{3/2} \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(3/2)),x]

[Out]

(8*b*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]]
)], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a*(a - b
)*(a + b)^(3/2)*d*Sqrt[Sec[c + d*x]]) + (2*(a - 3*b)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a +
 b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*S
qrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a*(a - b)*(a + b)^(3/2)*d*Sqrt[Sec[c + d*x]]) + (2*a*Sin[c + d*x])/(3*
(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]) - (8*a*b*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*(a^2
 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2799

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1))/(f*(m + 1)*(a^2 - b^2
)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[c*(a
*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) + (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d*(
b*c - a*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 2993

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)])^(3/2)), x_Symbol] :> Simp[(2*(A*b - a*B)*Cos[e + f*x])/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[
d*Sin[e + f*x]]), x] + Dist[d/(a^2 - b^2), Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x]
]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \frac{1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac{3}{2}}(c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\cos ^{\frac{3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\\ &=\frac{2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{a}{2}+\frac{3}{2} b \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx}{3 \left (a^2-b^2\right )}\\ &=\frac{2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{8 a b \sqrt{\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}-\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-2 a b+\left (-\frac{a^2}{2}-\frac{3 b^2}{2}\right ) \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2}\\ &=\frac{2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{8 a b \sqrt{\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{\left ((a-3 b) (a-b) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2}+\frac{\left (4 a b \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1+\cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2}\\ &=\frac{8 b \sqrt{\cos (c+d x)} \csc (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) (a+b)^{3/2} d \sqrt{\sec (c+d x)}}+\frac{2 (a-3 b) \sqrt{\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) (a+b)^{3/2} d \sqrt{\sec (c+d x)}}+\frac{2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{8 a b \sqrt{\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 7.81494, size = 359, normalized size = 0.94 \[ -\frac{2 \sqrt{\sec (c+d x)} \left (a^2 \left (a^2-b^2\right ) \sin (c+d x)-a \left (a^2-5 b^2\right ) \sin (c+d x) (a+b \cos (c+d x))+2 b \cos ^2\left (\frac{1}{2} (c+d x)\right ) (a+b \cos (c+d x)) \left (-\left (a^2+4 a b+3 b^2\right ) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} F\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )-b \left (\sin \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{3}{2} (c+d x)\right )\right ) \sec ^3\left (\frac{1}{2} (c+d x)\right ) (a+b \cos (c+d x))+4 b (a+b) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )\right )-4 b^2 \sin (c+d x) (a+b \cos (c+d x))^2\right )}{3 b d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(3/2)),x]

[Out]

(-2*Sqrt[Sec[c + d*x]]*(a^2*(a^2 - b^2)*Sin[c + d*x] - a*(a^2 - 5*b^2)*(a + b*Cos[c + d*x])*Sin[c + d*x] - 4*b
^2*(a + b*Cos[c + d*x])^2*Sin[c + d*x] + 2*b*Cos[(c + d*x)/2]^2*(a + b*Cos[c + d*x])*(4*b*(a + b)*Sqrt[Cos[c +
 d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*
x)/2]], (-a + b)/(a + b)] - (a^2 + 4*a*b + 3*b^2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*
x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - b*(a + b*Cos[c + d*x
])*Sec[(c + d*x)/2]^3*(Sin[(c + d*x)/2] - Sin[(3*(c + d*x))/2]))))/(3*b*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x])^(
3/2))

________________________________________________________________________________________

Maple [B]  time = 0.61, size = 1793, normalized size = 4.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x)

[Out]

2/3/d/(a+b)^2/(a-b)^2*(-3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*El
lipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1
/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d
*x+c)*sin(d*x+c)*a^3+4*cos(d*x+c)^2*a^2*b+3*cos(d*x+c)*a*b^2+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b
*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d
*x+c)*b^3+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+co
s(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*sin(d*x+c)+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*
cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2*sin(d*x+c)-
4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/
sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*sin(d*x+c)-8*a*b^2*cos(d*x+c)^2+5*cos(d*x+c)^3*a*b^2-4*cos(d*x+c)*a^2*b
+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))
/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*b^3+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+
b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(
d*x+c)*a^2*b+8*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1
+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a*b^2-5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos
(d*x+c)*sin(d*x+c)*a^2*b-7*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*E
llipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a*b^2+a^3*cos(d*x+c)+4*cos(d*x
+c)^2*b^3-cos(d*x+c)^3*a^3-4*cos(d*x+c)^3*b^3-3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1
+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*b^3+4*(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin
(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a*b^2-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*co
s(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*
x+c)*a^2*b-4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+c
os(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a*b^2-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1
/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*s
in(d*x+c)-3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+co
s(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*b^3)*cos(d*x+c)*(1/cos(d*x+c))^(3/2)/sin(d*x+
c)/(a+b*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \cos \left (d x + c\right ) + a}}{{\left (b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right ) + a^{3}\right )} \sec \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)/((b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3)*
sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))**(5/2)/sec(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^(3/2)), x)